
Kerberos Authentication System using
Public key Encryption

Pushkar Bhadle1, Sonal Gugale2, Sakshi Trar3, Harjot Kaur4, Shital Salve5

1,2,3,4B.E. Student, 5Associate Professor
Imperial College of Engineering and Research

Pune.

Abstract - Kerberos is a security System that allows secure
communication between computers by preventing third
person to steal information sent across wires. The kerberos
System Guards Electronic transmission that takes place over a
network or internet. To do this it firstly encrypts the
information i.e. codes it in such a way that the computer that
is going to receive it can only decode or decrypt it. Kerberos
also ensures that your password is never sent across wires
instead password encrypted with keys are sent. This kerberos
is necessary to prevent people from tapping the lines and
listening all the information specially passwords. so we use
Kerberos System to maintain the integrity and security of our
electronic communication taking place over insecure network.

Keywords - Authentication; Kerberos; Public-Key Cryptography;

I. INTRODUCTION
Kerberos gets its name from ancient mythology. Kerberos
which was called Cerberous in Greek mythology was a
three headed beast more or less like a dog that guarded the
underworld and kept others from entering the dead.
Kerberos protocol design started in late 1980’s as a part of
project Athena at MIT. It is designed for distributed
systems and is a secure authentication mechanism which
assumes the network is not safe. Because of Kerberos
authentication the client and server authenticate each other
before establishing a connection. Kerberos version 4 was
the first public release which later on lead to the actual
version 5 in 1995. It was released after wide public reviews.
Its specification are defined in internet RFC 1510 [4] and it
followed the IETF standard process. Kerberos was
originally designed for UNIX, but now it is available for all
major operating systems. Many commercial versions are
also present foe use for different purposes that can be freely
taken from MIT [6]. The problem that Kerberos deals with
is: Assume a client/user wants a service from a server
located anywhere in the network, then following three
threat exists.

• A user may gain access to a workstation and pretend to
be the another user/client form the same workstation.

• A user may even impersonate the other user, change
the network address and send the messages to server
impersonating the original user.

• A user may keep a watch on the exchanges of
information and later use that information to gain
entrance to a server. It is called replay attack.

In any of the above cases, the unauthorized user may gain
access to services and data that he/she is not authorized for.

In general, it is difficult to build a authentication protocol
at each server in the world. So MIT thought of an
centralized server which authenticates users to servers and
servers to users. Kerberos uses symmetric encryption but
we will use public key encryption

II. KERBEROS BACKGROUND

We saw the problem that kerberos deals with in previous
paragraph. To deal with the problem we would like to
authenticate request for service restrict services to
authorized users. Unauthorized used should not be
entertained by the server[1]. For this we cannot fully trust a
workstation to identify its users correctly to network
services.
Kerberos version 4 and kerberos version 5 are commonly in
use . Version 4 implementation is not yet completed. It's not
fully developed. Version 5 corrects all the deficiencies
found in version 4 and has been issued as a proposed
internet standard[3].

Fig 1 Kerberos as Black Box

III. MOTIVATION

In an environment where each user has its own dedicated
personal computer with no network connection , then its
data and resources are protected by physically securing
each personal computer. But if we use time sharing
environment then the time sharing operating system must
provide the security. To identify users the operating system
can enforce a policy such as username and password logon
procedure. It will help provide the security. Today, none of
the above scenarios is typical. Most commonly we have
distributed architecture which consists of clients and
distributed or centralized servers. In this environment

Pushkar Bhadle et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1930-1933

www.ijcsit.com 1930

following three approaches to security should be
envisioned.
• Rely on each individual workstation to assume the

identity of its users and also rely on each server to
enforce a policy based on user identification[1].

• Requires the user to prove that the user is authenticated
and authorized for each service invoked and also
requires the server to prove its identity to the client[1].

In a small environment with few computers as clients and
servers first two approaches will work but with open
environment the third approach will work. It will help
protect the data ,information and resources housed at the
server.

IV. EXISTING SYSTEM

Fig. 2 Existing System Working

AUTHENTICATION DIALOGUE Table summarizes the
basic version dialogue.

(a) Authentication Service Exchange to obtain TGT

(b)TGS Exchange to obtain service-granting ticket

 (c) client/server authentication exchange to obtain service
First we will see the authentication service exchange. In
Message (1), a client is requesting for a ticket-granting

ticket(TGT). It includes the ID of the user and the TGS.
The following new parameters are added:
• Realm: Indicates the realm (working area) of user[6].
• Options: Certain flags are set in the returned ticket[6].
• Times: Used by the client to do the following time

settings in the ticket[6].
—from: the desired start time for the requested ticket[6].
—till: the requested expiration time for the requested

ticket[6].
—rtime: requested renew-till time[6].

• Nonce: A random value that is repeated in message (2) to
assure that the response is fresh and has not been replaced
by an opponent or hacker[6]. Message (2) returns a ticket-
granting ticket(TGT). The block includes the session key
used between the client and the TGS, times specifications,
the nonce from message (1), and TGS identifying
information. The ticket itself includes the session key,
identifying information for the client, the requested time
values, and flags that reflect the status of this ticket and the
requested options. All the above stated flags introduce new
functionality to version 5.Let us now compare the ticket-
granting service exchange for versions 4 and 5.We see
that message (3) for both versions includes an authenticator,
a ticket, and the name of the requested service. In addition
to version 4, version 5 includes requested times and options
for the ticket and a nonce. The authenticator itself is same
as the one used in version 4. Message (4) has the same
structure as message (2). It returns a ticket plus information
needed by the client, with the information encrypted using
the session key that is now shared by the client and the
TGS. Therefore, for the client/server authentication
exchange, several new features appear in version 5. In
message (5), the client may request as an option that mutual
authentication is required .The authenticator includes
several new fields:
• Sub key: It is the client’s choice for an encryption key

to be used to protect this specific application session. If
this field is omitted, then the session key from the
ticket () is used for further operation.

• Sequence number: It is an optional field that specifies
the starting sequence number to be used by the server
for messages sent to the client during this session.
Messages may be numbered sequentially to detect
replays. If mutual authentication is required, the server
responds with message (6). This message includes the
timestamp from the authenticator. In version 4, the
timestamp was incremented by one. Incrimination of
timestamp is not necessary in version 5, because the
message’s formats nature is such that it is not possible
for an opponent to create message (6) without the
knowledge of the appropriate encryption keys. The
Subkey field, if present, overrides the Subkey field that
is present in message (5).

V. NEW KERBEROS USING PUBLIC KEY ENCRYPTION

A new direction for Kerberos is public key cryptography.
Public key cryptography eases key distribution a lot. Using
only symmetric cryptography KDC and client must share a
key; using asymmetric cryptography the client can present
the public key, which can be used to encrypt messages for

1. C->AS Options||IDC||Realmc||IDtgs||times||nonce

2. AS->C
Realmc||IDC||Tickettgs||E(Kc,[Kc,tgs||times||Nonce1||Realmtgs||IDtgs]

Tickettgs = E(Ktgs,[flags||K c,tgs||Realmc||IDc||ADc||Times])

3. C->TGS Options||IDv||Times||Tickettgs||Authenticatorc
4.TGS->C
Realmc||IDc||Ticketv||E(Kc,tgs[Kc,v||Times||Nonce2||Realmv||IDv]

 Tickettgs = E(Ktgs[Flags||Kc,tgs||Realmc||Idc||ADc||Times])

 Ticketv = E(Kv[Flags||Kc,v||Realmc||IDc||ADc||Times])

 Ticketv = E(Kv[Flags||K c,v||Realmc||ADc||Times])

 Authenticatorc = E(K c,tgs[IDc||Realmc||TS1])

5. C->V Options||Ticketv||Authenticatorc

6.V->C EKc,v [TS2||Subkey||Seq!=]

 Ticketv = E(Kv,[Flag||Kc,v||Realmc||IDc||ADc||Times])

Authenticatorc = E(Kc,v[IDc||Realmc||TS2||Subkey||Seq!=])

Pushkar Bhadle et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1930-1933

www.ijcsit.com 1931

it. This is used for email communication by the program
Pretty Good Privacy (PGP). The big advantage for
Kerberos is that the key distribution centre does not have to
save the keys client keys in his database any longer. To
obtain a ticket granting ticket, the client has to present his
public key. The KDC uses this key to encrypt the ticket and
session key[7]. As everybody is able to create a key pair for
public key cryptography, additional infrastructure is
needed. A trusted certification authority (CA) has to sign
every valid public key. The client can present his key which
is signed by the trusted authority. Integration in Kerberos is
easy due to the fact that only interaction with the
authentication service has to be changed to use asymmetric
cryptography; everything else can remain as it is. If the
client presents his public key, the authentication service
checks, whether it has a valid signature from a trusted
authority and return a session key afterwards. The client
decrypts the session key with the private key of his key
pair. Following communication is handled like in Kerberos
without public key cryptography support.

Algorithm used: RSA Algorithm

Communication Channel

Hacker

Public Key

Private key Private key

Public Key

Hello

Client-2’s public key
is used to encrypt

Client-1 Client-2

Public Key Encryption (RSA)

Fig. 3 Public key Encryption using RSA.

The research done by Diffie and Hellman introduced a new
approach to cryptography and also challenged cryptologists
to come up with a crypto graphical algorithm that met the
requirements for public-key systems. Numbers of
algorithms have been proposed for public-key
cryptography. Some of these provide very successful and
secure results. Ron Rivest, Adi Shamir, and Len Adleman
were the first three persons who got successful responses
from the challenges that were raised in 1977. The Rivest-
Shamir-Adleman (RSA) scheme was the most widely
accepted and implemented general-purpose approach to
public-key encryption. The RSA scheme is a block cipher
in which the plaintext and cipher text are integers between 0
and n - 1 for some n. The typical size for n is 1024 bits, or
309 decimal digits. That means that n is less than
21024.Now we examine RSA in this section in some detail.
Then we examine some of the computational and crypt
analytical implications of RSA[1].

Description of the Algorithm
RSA makes use of an expression with exponentials.
Plaintext is encrypted in blocks, where each block is having
a binary value less than some number let say n. The block
size must be less than or equal to log2 (n) + 1; in practice,

the block size is i bits, where 2i n ≤ 2i+1. Encryption and
decryption are of the following form, for some plaintext
block M and cipher text block C[3].

 C = Me mod n
M = Cd mod n = 1Med mod n = Med mod n

Both sender and receiver must know the value of n. The
sender knows the value of e, and the receiver knows the
value of d. Thus, this is a public-key encryption algorithm
with a public key of PU = {e, n} and a private key of PR =
{d, n}. Below are the following requirements that must be
met for this algorithm:_
1. It is possible to find values of e, d, n such that Med mod n
= M for all M < n.[5]
2. It is relatively easy to calculate
 Me mod n and Cd mod n for all values of M < n.[5]
3. It is infeasible to determine d given e and n.[5]
 First, we focus on the first requirement. We need
to find a relationship of the form

Med mod n = M
 The preceding relationship holds if e and d are
multiplicative inverses modulo φ(n), where φ(n) is the
Euler totient function φ (pq) = (p - 1)(q - 1). The
relationship between e and d can be expressed as

ed mod φ(n) = 1
From this we can say that e and d are multiplicative
inverses mod f(n). According to the rules of modular
arithmetic, this is true only if d (and therefore e) is
relatively prime to f(n). Equivalently, gcd(f(n), d) = 1

VI.CONCLUSION
The Kerberos Authentication protocol is widely used by
many big or small scale companies as a trusted
authentication protocol. Mutual authentication between the
clients and the server is the main advantage of this protocol.
The passwords are never sent across the network. The
addition of public key in the system would certainly add up
the authentication and security level. Kerberos is entirely
based on open Internet standards. A number of well-tested
and widely-understood reference implementations and
RFCs are available free of charge to the Internet
community[3][4][5]. Commercial implementations based
on the accepted standards are also available.

Key Generation
Select p,q p and q both prime, p!=q
Calculate n = p*q
Calculate ɸ(n) = (p-1)(q-1)
Select integer e gcd(ɸ(n),e)=1;1<e< ɸ(n)
Calculate d d = e-1(mod ɸ(n))
Public key PU = [e,n]
Private key PR = [d,n]

Encryption using Public Key
Plaintext M < n
Cipher text C = Me mod n

Decryption using Public Key
Plaintext C
Cipher text M = Cd mod n

Pushkar Bhadle et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1930-1933

www.ijcsit.com 1932

ACKNOWLEDGEMENT
We express our sincerest and deepest regards to our project
guide Prof. Shital Salve for her valuable inputs, able
guidance, encouragement, whole-hearted cooperation and
constructive criticism .We deeply express our sincere
thanks to our Head of Department of Computers Prof.
Vinod Wadne for encouraging and allowing us to present
the project We this thank all our lecturers who have directly
or indirectly helped our project.

REFERENCES

[1] Sufyan T. Faraj Al-Janabi and Mayada Abdul-salam Rasheed, “Public-
Key Cryptography Enabled Kerberos Authentication”, IEEE
communication magazine, (2011) .

[2] Sufyan Alan H. Harbitter PEC Solutions, Inc., “Performance of Public-
Key-Enabled Kerberos Authentication in Large Networks”, IEEE
communication magazine, (2001)

[3] C. Numen and k.Raeburn“The kerberos network authentication
service(V5)", RFC 4120.

[4] J. Kohl, and C. Neuman, “The Kerberos network authentication service
(V5)”, RFC 1510.

[5] L. Zhu B. Tung, “Public Key Cryptography for Initial Authentication in
Kerberos (PKINIT),”RFC 4556.

[6] www.mit.edu/kerberos
[7]P. Leach and k. jaganathan, "Kerberos Cryptosystem Negotiation

Extension", RFC 4537.

Pushkar Bhadle et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (2) , 2014, 1930-1933

www.ijcsit.com 1933

